Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256051

RESUMO

Drought stress can seriously affect the yield and quality of wheat (Triticum aestivum). So far, although few wheat heat shock transcription factors (Hsfs) have been found to be involved in the stress response, the biological functions of them, especially the members of the HsfC (heat shock transcription factor C) subclass, remain largely unknown. Here, we identified a class C encoding gene, TaHsfC3-4, based on our previous omics data and analyzed its biological function in transgenic plants. TaHsfC3-4 encodes a protein containing 274 amino acids and shows the basic characteristics of the HsfC class. Gene expression profiles revealed that TaHsfC3-4 was constitutively expressed in many tissues of wheat and was induced during seed maturation. TaHsfC3-4 could be upregulated by PEG and abscisic acid (ABA), suggesting that this Hsf may be involved in the regulation pathway depending on ABA in drought resistance. Further results represented that TaHsfC3-4 was localized in the nucleus but had no transcriptional activation activity. Notably, overexpression of TaHsfC3-4 in Arabidopsis thaliana pyr1pyl1pyl2pyl4 (pyr1pyl124) quadruple mutant plants complemented the ABA-hyposensitive phenotypes of the quadruple mutant including cotyledon greening, root elongation, seedling growth, and increased tolerance to drought, indicating positive roles of TaHsfC3-4 in the ABA signaling pathway and drought tolerance. Furthermore, we identified TaHsfA2-11 as a TaHsfC3-4-interacting protein by yeast two-hybrid (Y2H) screening. The experimental data show that TaHsfC3-4 can indeed interact with TaHsfA2-11 in vitro and in vivo. Moreover, transgenic Arabidopsis TaHsfA2-11 overexpression lines exhibited enhanced drought tolerance, too. In summary, our study confirmed the role of TaHsfC3-4 in response to drought stress and provided a target locus for marker-assisted selection breeding to improve drought tolerance in wheat.


Assuntos
Arabidopsis , Resistência à Seca , Regulação para Cima , Triticum/genética , Fatores de Transcrição de Choque Térmico , Ácido Abscísico/farmacologia , Arabidopsis/genética , Interleucina-6
2.
Int J Mol Sci ; 24(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36674529

RESUMO

High temperature has severely affected plant growth and development, resulting in reduced production of crops worldwide, especially wheat. Alternative splicing (AS), a crucial post-transcriptional regulatory mechanism, is involved in the growth and development of eukaryotes and the adaptation to environmental changes. Previous transcriptome data suggested that heat shock transcription factor (Hsf) TaHsfA2-7 may form different transcripts by AS. However, it remains unclear whether this post-transcriptional regulatory mechanism of TaHsfA2-7 is related to thermotolerance in wheat (Triticum aestivum). Here, we identified a novel splice variant, TaHsfA2-7-AS, which was induced by high temperature and played a positive role in thermotolerance regulation in wheat. Moreover, TaHsfA2-7-AS is predicted to encode a small truncated TaHsfA2-7 isoform, retaining only part of the DNA-binding domain (DBD). TaHsfA2-7-AS is constitutively expressed in various tissues of wheat. Notably, the expression level of TaHsfA2-7-AS is significantly up-regulated by heat shock (HS) during flowering and grain-filling stages in wheat. Further studies showed that TaHsfA2-7-AS was localized in the nucleus but lacked transcriptional activation activity. Ectopic expression of TaHsfA2-7-AS in yeast exhibited improved thermotolerance. Compared to non-transgenic plants, overexpression of TaHsfA2-7-AS in Arabidopsis results in enhanced tolerance to heat stress. Simultaneously, we also found that TaHsfA1 is directly involved in the transcriptional regulation of TaHsfA2-7 and TaHsfA2-7-AS. In summary, our findings demonstrate the function of TaHsfA2-7-AS splicing variant in response to heat stress and establish a link between regulatory mechanisms of AS and the improvement of thermotolerance in wheat.


Assuntos
Arabidopsis , Termotolerância , Termotolerância/genética , Triticum/metabolismo , Processamento Alternativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Resposta ao Choque Térmico/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Temperatura Alta
3.
Environ Chem Lett ; 21(2): 725-739, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36628267

RESUMO

Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information: The online version contains supplementary material available at 10.1007/s10311-022-01557-z.

4.
Front Plant Sci ; 13: 922561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832224

RESUMO

Heat shock transcription factor (Hsf) exists widely in eukaryotes and responds to various abiotic stresses by regulating the expression of downstream transcription factors, functional enzymes, and molecular chaperones. In this study, TaHsfA2-13, a heat shock transcription factor belonging to A2 subclass, was cloned from wheat (Triticum aestivum) and its function was analyzed. TaHsfA2-13 encodes a protein containing 368 amino acids and has the basic characteristics of Hsfs. Multiple sequence alignment analysis showed that TaHsfA2-13 protein had the highest similarity with TdHsfA2c-like protein from Triticum dicoccoides, which reached 100%. The analysis of tissue expression characteristics revealed that TaHsfA2-13 was highly expressed in root, shoot, and leaf during the seedling stage of wheat. The expression of TaHsfA2-13 could be upregulated by heat stress, low temperature, H2O2, mannitol, salinity and multiple phytohormones. The TaHsfA2-13 protein was located in the nucleus under the normal growth conditions and showed a transcriptional activation activity in yeast. Further studies found that overexpression of TaHsfA2-13 in Arabidopsis thaliana Col-0 or athsfa2 mutant results in improved tolerance to heat stress, H2O2, SA and mannitol by regulating the expression of multiple heat shock protein (Hsp) genes. In summary, our study identified TaHsfA2-13 from wheat, revealed its regulatory function in varieties of abiotic stresses, and will provide a new target gene to improve stress tolerance for wheat breeding.

6.
Mol Plant ; 13(9): 1250-1261, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32673760

RESUMO

Alfalfa (Medicago sativa) is one of the most important forage crops in the world; however, its molecular genetics and breeding research are hindered due to the lack of a high-quality reference genome. Here, we report a de novo assembled 816-Mb high-quality, chromosome-level haploid genome sequence for 'Zhongmu No.1' alfalfa, a heterozygous autotetraploid. The contig N50 is 3.92 Mb, and 49 165 genes are annotated in the genome. The alfalfa genome is estimated to have diverged from M. truncatula approximately 8 million years ago. Genomic population analysis of 162 alfalfa accessions revealed high genetic diversity, weak population structure, and extensive gene flow from wild to cultivated alfalfa. Genome-wide association studies identified many candidate genes associated with important agronomic traits. Furthermore, we showed that MsFTa2, a Flowering Locus T homolog, whose expression is upregulated in salt-resistant germplasms, may be associated with fall dormancy and salt resistance. Taken together, these genomic resources will facilitate alfalfa genetic research and agronomic improvement.


Assuntos
Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Medicago sativa/genética , Flores/genética , Flores/metabolismo
7.
Plant Physiol ; 172(2): 1306-1323, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27578551

RESUMO

Cold acclimation is an important process by which plants respond to low temperature and enhance their winter hardiness. C-REPEAT BINDING FACTOR1 (CBF1), CBF2, and CBF3 genes were shown previously to participate in cold acclimation in Medicago truncatula In addition, MtCBF4 is transcriptionally induced by salt, drought, and cold stresses. We show here that MtCBF4, shown previously to enhance drought and salt tolerance, also positively regulates cold acclimation and freezing tolerance. To identify molecular factors acting upstream and downstream of the MtCBF4 transcription factor (TF) in cold responses, we first identified genes that are differentially regulated upon MtCBF4 overexpression using RNAseq Digital Gene Expression Profiling. Among these, we showed that MtCBF4 directly activates the transcription of the COLD ACCLIMATION SPECIFIC15 (MtCAS15) gene. To gain insights into how MtCBF4 is transcriptionally regulated in response to cold, an R2R3-MYB TF, MtMYB3, was identified based on a yeast one-hybrid screen as binding directly to MYB cis-elements in the MtCBF4 promoter, leading to the inhibition of MtCBF4 expression. In addition, another MYB TF, MtMYB61, identified as an interactor of MtMYB3, can relieve the inhibitory effect of MtMYB3 on MtCBF4 transcription. This study, therefore, supports a model describing how MtCBF4 is regulated by antagonistic MtMYB3/MtMYB61 TFs, leading to the up-regulation of downstream targets such as MtCAS15 acting in cold acclimation in M. truncatula.


Assuntos
Aclimatação/genética , Congelamento , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Bases , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
Sci Rep ; 5: 8322, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25662574

RESUMO

Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy.

9.
PLoS One ; 9(4): e96255, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24763740

RESUMO

Staphylococcus aureus belongs to one of the most common bacteria causing healthcare and community associated infections in China, but their molecular characterization has not been well studied. From May 2011 to June 2012, a total of 322 non-duplicate S. aureus isolates were consecutively collected from seven tertiary care hospitals in seven cities with distinct geographical locations in China, including 171 methicillin sensitive S. aureus (MSSA) and 151 MRSA isolates. All isolates were characterized by spa typing. The presence of virulence genes was tested by PCR. MRSA were further characterized by SCCmec typing. Seventy four and 16 spa types were identified among 168 MSSA and 150 MRSA, respectively. One spa type t030 accounted for 80.1% of all MRSA isolates, which was higher than previously reported, while spa-t037 accounted for only 4.0% of all MRSA isolates. The first six spa types (t309, t189, t034, t377, t078 and t091) accounted for about one third of all MSSA isolates. 121 of 151 MRSA isolates (80.1%) were identified as SCCmec type III. pvl gene was found in 32 MSSA (18.7%) and 5 MRSA (3.3%) isolates, with ST22-MSSA-t309 as the most commonly identified strain. Compared with non-epidemic MRSA clones, epidemic MRSA clones (corresponding to ST239) exhibited a lower susceptibility to rifampin, ciprofloxacin, gentamicin and trimethoprim-sulfamethoxazole, a higher prevalence of sea gene and a lower prevalence of seb, sec, seg, sei and tst genes. The increasing prevalence of multidrug resistant spa-t030 MRSA represents a major public health problem in China.


Assuntos
Proteínas de Bactérias/genética , Infecção Hospitalar/microbiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , China/epidemiologia , Infecção Hospitalar/epidemiologia , Farmacorresistência Bacteriana/genética , Técnicas de Genotipagem , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Virulência/genética
10.
Environ Sci Technol ; 47(3): 1504-9, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23282022

RESUMO

Immovable historical relics in some archeology museums of China suffer deterioration due to their improper preservation environment. The existing environmental control systems used in archeology museums are often designed for the amenities of visitors, and these manipulated environments are often inappropriate for the conservation of abiotic relics. This paper points out that the large open space of the existing archeology museum could be a cause of deterioration of the relics from the point of view of indoor air convective flow. The paper illustrates the need to introduce a local pit environmental control, which could reintegrate a pit primitive environment for the preservation of the historical relics by using an air curtain system, orientated to isolate the unearthed relics, semiexposed in pits to the large gallery open space of the exhibition hall.


Assuntos
Poluição do Ar/prevenção & controle , Arqueologia , Meio Ambiente , Museus , Poluentes Atmosféricos/análise , China , Difusão , Gases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...